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Fracture of perfectly oriented polymer fibres was studied by means of a computer simulation technique
based on the ultimate structure model in order to estimate the upper limit of the tenacity of polymers with
finite molecular weight. The fracture mechanism was also investigated in terms of average molecular weight
and different nature of interchain interaction. It was observed that the tenacity of the model fibres increased
with molecular weight and tended to approach the theoretical limit for the infinite molecular weight. In the
cases of lower molecular weight, significant broadening of the stress distribution was observed under elevated
stress, and the fracture behaviour was plastic. In the cases of higher molecular weight, the stress distribution
was quite narrow until significant number of bond-cleavages occurred, and the fracture was brittle. The
primary factor of fracture was found to be the chain-slippage in the lower molecular weight cases, and chain-
scission in the higher molecular weight cases. Higher tenacity was marked when the polar interactions were
introduced, especially in lower molecular weight cases. This can be attributed to the enhancement of chain
binding by the polar interactions and suppression of chain-slippage. © 1997 Elsevier Science Ltd. All rights

reserved.
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INTRODUCTION

Ultimate values of the tenacity of various polymers, so-
called theoretical tenacity, have often been quoted in
designing high-performance polymer materials. The
values were conventionally calculated from the strength
of the chemical bond and the cross-sectional area of a
polymer chain. Ito! calculated the theoretical tenacity of
polyethylene to be 29.5 GPa. Other methods to estimate
the theoretical tenacity of polymer fibres have also been
proposed. Boudreaux? calculated the potential surface
of a stretched polyethylene chain by the molecular
orbital method and obtained the theoretical tenacity to
be 19GPa. Crist® considered a chain composed of
segments connected by Morse function and analytically
predicted the condition of chain scission. He concluded
the tenacity of infinitely long chains should be one-third
of that determined by the Morse function, which is about
10 GPa for polyethylene.

These theoretical works assume infinite molecular
weight for the polymer. However, we can neither obtain
such a polymer of infinite molecular weight nor make fibre
with it. Therefore, it is useful for polymer modelling to
estimate the upper limit of tenacity that we can reach with
polymers of finite molecular weight. Termonia er al.*~®
introduced the simulation model consisting of perfectly
oriented polymer chains of finite length, and explained the
structure—property relationship of highly oriented poly-
ethylene fibres. Another factor affecting the tenacity is the
characteristics of interchain interaction. Coulombic inter-
action and hydrogen bonding are especially important
because they exist in many commercial polymers. The
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effect of the polar interactions has not been considered in
the previous works on the theoretical tenacityl‘6 but must
have an important role when the length of chains are finite.
Therefore, we extended the model of Termonia et al. to
include such polar interactions in this study.

The purpose of this work is first to estimate the upper
limit of the tenacity of polymer fibres with finite
molecular weight and next to discuss the fracture
mechanism in terms of average molecular weight and
the nature of interchain interaction.

METHODOLOGY
Models

In the model of Termonia ef al., the model fibre is
composed of perfectly oriented polymer chains*, where
chains consist of covalently connected segments. All the
chains were perfectly oriented to the fibre axis (z-axis) and
aligned with regular separations in x and y directions. In
other words, the initial structure of the model fibre is close
to a single extended crystal containing point defects due to
chain ends. The effect of molecular weight was evaluated
by varying average chain length in the model. We
formulated our model by introducing various modifica-
tions to the model of Termonia er al. One aspect of our
interest is the effect of polar interactions among polymers
on the ultimate tenacity. We took into account Coulombic
interaction and hydrogen bond in addition to van der
Waals interaction. Thus, we considered two models; (1) the
nonpolar model in which only van der Waals interaction
was taken into account as an interchain interaction and (2)
the polar model in which Coulombic interaction and
hydrogen bond were also introduced. Consequently, the
nonpolar model represents the polymers in which polar
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Figure 1 The schematic image of the model fibre
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Figure 2 Distribution of chain length when the expected average chain
length was 50 and total length of the fibre was 300

interaction is negligible such as polyethylene or polypro-
pylene, and the polar model denotes the polymers in which
Coulombic interaction and hydrogen bond exist such as
polyamides. However, we used the same geometrical
structure for both models for the simplicity of comparison.
Since one of the typical polar polymers is nylon6,
(—=NH(CH;)¢CO-),, we constructed a model referring
the properties of nyloné to this study. However, it should
be noted that our model is not fully precise because various
simplifications and modifications were introduced mainly
to save the computation time.

The initial structure of the model fibre was constructed
in the following way. First, we located segments on the
rectangular lattice. Each segment represents a monomer
unit of nylon6 (NH(CH,)CO). Referrmg the unit cell
of the a-form crystal of nylon6 we_chose the lattice-
spacing to be 48 A, 4.0A and 8.6A, for x, y and =
directions, respectively; the z direction is the fibre
direction. In this sense Coulombic interaction is
anisotropic for the x and y directions, and the hydrogen
bond acts only for x direction. The schematic repre-
sentation of the model fibre is shown in Figure /. The
number of lattice points was 200 or 300 for the =
direction, and 10 for x and y directions, where periodic
boundary condition was applied for x and y direction.
Second, beginning with a segment at the bottom (z = 0)
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of the fibre, a chain was propagated toward the top of the
fibre by connecting segments with a valence bond when a
random number generated each time was larger than the
probability for chain-termination, p,, defined by

ptzl/POa (l)

where P, denotes the average number of connected
segments (average chain length) expected. This method
gives the most probable distribution of chain length with
a reaction degree P,. In order to avoid the uncertainty of
the effect of very short chains (less than three segments)
and very long chains reaching both ends of the fibre,
those cases were eliminated during the setup process of
the system. As a result of this treatment, the average
length of chains, P, obtained was somewhat different
from the expected one, Py, and fluctuates due to random
processes. An example of the distribution of chain length
is shown in Figure 2, here Py had been set to 50 and the
resulting P was 55.

In order to cover a wide range of molecular weight,
we considered a segment as several monomer units by
multiplying an integer number, N, to each nonbonding
interaction. Thls treatment was also introduced by
Termonia et al.* and certified to work well. Since the
molecular weight of a monomer of nylon6 is 113, the
molecular weight for each case was obtained by multi-
plying 113 with P. The cases we simulated are listed in
Table 1.

Force fields

The potential of a bond, Uy(/), was expressed by
Morse function,

Up(l) = Dp[l —exp{~a(l ~ )}]

Ky \ 172
S 2
¢ <2Db> @
Here, D, is the bond energy, ki Is the initial force
constant of the bond, / is the segment length, and /;, is
unstressed segment length, 8.6 A (length of a monomer

unit). We then obtain the force on a bond, Fy(/), as a
function of /,

Fy(I) = 2aDy exp{—a(l — ly)}[1 — exp{—a(l - )} (3)

The maximum of force can be determined by the
condition of

dF, (/)
=0
d/ ()
Then, the bond length at the maximum force is
lnax = In 2/a +lo (5)

The energy at the maximum force is given by
Ubmax = Db/4 (6)

The bond energy, Dy, has been reported 83.1 kcal mol™’
for a C-C bond and 69.7 kcalmol™' for a C-N bond®.

Since we consider a segment which mimics a monomer
unit of nyloné, Dy is found to be 554.9 kcal mol ! by
summing up the bonding energy of five C-C bonds and
two C-N bonds. Then, Uy, is 138. 7kcal mol™!. The
force constant, ki, was 85.9 kcal mol™ 'A%, converted
from the experimental value for a-form crystal of nylon6
at low temperature, 270 GPa”. A bond cleaves when the
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stress on it is elevated to certain degree. Zhurkov
measured the rate of bond- cleavage in stressed fibres,
and proposed the activated process'’. Termonia er al.
used Zhurkov’s equation with d1fferent parameter sets 1n
their simulation of highly oriented polyethylene fibres*.

However, it should be noted that significant inhomo-
geneity of stress on bonds must exist in Zhurkov’s
experiment because he used real fibres which contain
various structural inhomogeneities such as crystal,
amorphous, etc. Therefore, force acting on the stress-
concentrated bonds must be much higher than the
applied bulk stress, and bond-cleavage can be over-
estimated. Because we focus on the tenacity of upper
limit then we can approach with polymers of finite
molecular weight, we used the Morse function in judging
bond-cleavage. We compared the energy of a bond,
Uy(l), calculated by equation (2) with the maximum
bond energy, Uy max defined by equation (6). Then, the
probability of bond cleavage, Py ., is given by

U, - Uyl
Pirear = TAL exp{————b‘manT b )} (7)

where k is the Boltzman constant, and 7 is the
temperature (in this study 300 K); 7 was chosen to be
10'! as a typical frequency of a single bond: At is the time
for an iteration of the simulation. The probability
calculated by equation (7) exceeds unity when the bond
strained more than 26%, and the stress at the time is
about 28 GPa. This is the upper limit that the tenacity of
our model reaches with infinite molecular weight and is
identical to the conventionally used theoretical tenacity.
Non-bonding interactions were taken into account
between adjacent chains. Evaluating van der Waals
interaction among all atoms explicitly by any potential
function such as Lennard-Jones 6-12 type function is
impossible because of the enormous number of
interactions. Termonia ef al.* used a harmonic potential
truncated at a small distance in order to describe van der
Waals interaction among polyethylene chains, where
force constant was chosen to be the shear modulus of
polyethylene crystal. This may be a reasonable treatment
while the strain is small. For larger strain, this assump-
tion no longer has reality, and there is no absolute way to
estimate van der Waals interaction explicitly. It may be
possible to calculate the potential surface of a pair of
short n-alkane chains by means of ab initio molecular
orbitL (MO) methods using larger basis set. In this study,
however, we employed a function having the same initial
modulus with the shear of the polyethylene crystal and
approaching smoothly zero at the separation in z
direction to be /,. The function we employed was

n
franl32) = ki, (1- %) ®
where f.4.(Az) is the force acting on two segments
belonging to adjacent chains and separated by Az for z
direction. The value of force constant, kg, was chosen to
be 3.7 kcal mol ™' A~2 converted from the shear modulus
of polyethylene crystal, 3GPa*. The factor n was
arbitrarily chosen as 6, and hence the force assumed
the maximum at Az — /7.

Coulombic interaction was calculated as between
an oxygen and an aminoic hydrogen in a monomer

unit by

UO qi
R == T
C( ) 47(606R (9)

where charge ¢; was chosen to be o.4e.u., and R was
calculated by

R =A7+r3 (10)

where ¢, is the dielectric constant of vacuum and ry is the
closest distance between the hydrogen and the oxygen in
the a-form crystal of nylon6. For chains adjacent in the zx
plane, ry is 1.75 A, and it is 4.0 A for chains adjacent in yz
plane. Dielectric constant of the system e, was chosen to be
3.5. Coulombic interactions due to other atom-pairs were
neglected because interactions among other atom-pairs are
much smaller, and the interactions between same point-
charges (oxygen—oxygen or hydrogen—hydrogen) may
be reduced more effectively by the conformational
change in a monomer. However, detailed discussion
in atomic level is not our purpose in this study.

The most significant character of a molecule of nylon6
is its intermolecular hydrogen bond. We calculated the
potential of hydrogen bond between segments belonging
to different chains adjacent in zx plane by Dreiding type
function!!

'HB 12 'HB 10 4
Unp(rpa,8) = Dup 5(—) —6(—) cos'd (11)
pa

pa

We set Dy to 4.0 kcal mol ! and ryg to 2.75 A. rpa 18
the distance between the hydrogen donor (N) and the
acceptor (O).

All the interchain interactions described above were
truncated at the distance when the separation in z
direction was the unstressed segment length, /, = 8. 6A,
in order to save computation time. For the Coulombic
interaction, the force acting 8.6 A apart is still consider-
able and discontinuity of the force by sudden truncation
causes severe instability of the stimulation. Therefore, we
modified Coulombic interaction by

dU(R)
Ue(R) = US(R) = Ug(Re) - (T> R:RC(R - Ro)

(12)

where UJ(R) is the original potential calculated by
equation (9), and R, is the cutoff distance.

Simulations

Our simulation was performed by calculating the
equilibrium position of each segment along the fibre
direction against the increasing strain, keeping the
position perpendicular to the fibre direction unchanged.
The model fibres were extended with small ratio (0.05%)
at a time. This was done by simply multiplying 1.0005 to
z coordinates of all segments except for ones at the
bottom, where the z coordinates are always 0. The strain
rate was chosen to be 120% min~' which is comparable
with the standard testing method for synthetic fibres'?
The time for an iteration, At, should then be 0. 0255
After the expanding cycle, the positions of all the
segments except for those at fibre ends were adjusted
by minimization of potential. We employed the steepest
decent algorithm for the potential minimization. Here,
potential is not fully minimized at each iteration, because
most of the adjustment of the segment positions by the
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Figure 3 The stress—strain curves simulated for the nonpolar model
fibres. Numbers on the curves are average molecular weight

Table 1 Size and average chain length of the model fibres
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Figure 4 The stress—strain curves simulated for the polar model fibres.
Numbers on the curves are average molecular weight

Number of Nonpolar model Polar model

segments in Number of monomers -

z direction Py united to a segment, N, P M, P M,

200 20 1 2 2.6 x 10° 23 2.7 % 10°
30 1 31 3.6 x 10° 31 3.6 x 10°
30 3 30 1.1 x 10* 31 1.1 x 10*
30 10 31 3.6 x 10*

300 50 1 53 6.2 x 10° 53 6.2 x 10°
50 5 52 3.0 x 10* 52 3.0 x 10°
50 10 53 6.2 x 10* 55 6.4 x 10*
50 20 50 1.2 x 10°

minimization takes place in the first few steps, and great
precision of the minimization is not only unnecessary for
our purpose but also extremely time-consuming. We
stopped the minimization at the maximum of 20 cycles.

After the minimization, the probability of bond-
cleavage was calculated by the method described
above, and compared with a random number between
0 and 1 generated each time. If the probability is larger
than the random number, the bond cleaves. If any bond
cleavage occurred, relaxations were performed again.
The stress on the fibre is calculated based on the average
stress on the segments in the fibre ends, and stress—strain
data were restored. The fibres were extended at the
constant strain rate until the total stress on the fibre
exceeded the maximum which had been marked in the
simulation, and the maximum were considered to be the
tenacity of the fibre.

RESULTS AND DISCUSSION

Tensile properties
Simulated stress—strain (SS) curves for nonpolar
models with various molecular weight are shown in

Figure 3, here numbers on the curves are the molecular
weight obtained by multiplying 113 N, to the average
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chain length as described in the previous section (see
Table 1). First, we look at the tenacity of the model fibres
and the maxima of the curves. As molecular weight
increases, the tenacity increases remarkably. A value of
26 GPa was achieved in the highest molecular weight
case (M, = 1.2 x 10°), which is very close to the upper
limit of our model 28 GPa, to be expected for infinite
molecular weight. Next, we discuss the profile of the
curves. In all cases stress increases with strain up to some
point (at a strain of 5%, 6%, 7%, 11%, 14%, 17%, and
19% in the cases of M, = 2.6 x 10°,3.6 x 10%,6.2 x 10°,
1.1 x 10°, 3.0 x 10%, 6.2 x 10*, and 1.2 x 10, respec-
tively) where the slope of the curves discontinuously
change. We call these points critical points in this study.
The positions of the critical points shift toward higher
stress and strain with an increasing molecular weight. All
curves are similar to the profile of the Morse function
before the critical points, and the deformation can be
considered elastic in this region. However, the slopes of
the curves, the moduli of the model fibres, are noticeably
different. The slopes of the curves are smaller in the lower
molecular weight cases and become larger with increasing
molecular weight. Those in the highest molecular weight
cases (M, >6.2 x 10*) are almost identical to the one
defined by the Morse function. The reason for smaill
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Figure 5 Molecular weight dependence of the tenacity of nonpolar (A) and polar (@) model fibres

moduli in the lower molecular weight cases will be
discussed later. The behaviour of the curves after the
critical points is signiﬁcantly different. Plastic deforma-
tion was observed in the lower molecular weight cases
M,<1.1x 10%), where the maxima of the curves and the
critical points are not the same. Conversely, in the higher
molecular weight cases (M,>3.0 x 10%), the stress
suddenly falls after the critical points. Here, the critical
points and the maxima are identical. We call the
deformation behaviour observed in lower molecular
weight cases elastic—plastic and the behaviours observed
in higher molecular weight cases elastic—brittle. Since the
profile of the curves before the critical points are similar
to the Morse function in all cases, the deformation of the
fibres can be described mainly by the elongation of bonds
in this region. Therefore, the deformation before the
critical point is quite elastic for every case. However, it
was suggested that the deformation (or the fracture)
mechanisms after the critical point must be completely
different in cases of different molecular weights.

The SS curves for polar models are shown in Figure 4.
The trend of the curves is similar to that observed in
nonpolar models. The critical points were observed at
about 8%, 9%, 11%, 6%, 17%, 18%, and 19% in the
cases of M, = 2.7 x 10, 36><10 6.2 x 10°, 1.1 x 10°%,
3.0 x 10%, 3.6 x 10°, and 6.4 x 10°, respectively. Appar-
ently, the critical points are located at higher strain and
stress than those observed in nonpolar model. Also, the
tenacity is greater than that of nonpolar models with
comparable molecular weight cases. In the lower mole-
cular weight cases (M, <6.2 x 10°), the stress gradually
decreases with strain after the critical points (not staying

constant as observed in nonpolar models). This difference
can be explained by the character of hydrogen bonds,
which is strong but active only within a small distance.
However, the gradual decrease of stress supports the
plastic deformation. The trend of deformations in the
lower molecular weight cases are elastic before the
critical point and changes to plastic after it (elastic—
plastic). In contrast in the higher molecular weight cases
(M, >1.1 x 10*) the stress suddenly drops at the critical
point (elastic—brittle), and the critical points and maxima
are the same. The molecular weight at which deforma-
tion pattern changes from elastic—plastic to elastrc\
brittle can be estimated to be M, = 3.0 x 10* in the
nonpolar model and M, ~ 1.1 x 10% in the polar model.
The slopes of the curves also depend on the molecular
weight, but the reduction at the lower molecular weight
cases is less than that in the nonpolar model.

The molecular weight dependence of the tenacity in
two models is shown in Figure 5. One can see strong
dependence of the tenacity on the molecular weight, but
no simple power law was obtained in both models. It is
obvious that the tenacity of polar models is considerably
higher than that of nonpolar models, and the difference is
more significant in the lower molecular weight region,
while the difference becomes smaller in the higher
molecular weight region. Two curves appear to meet
for infinite molecular weight, where 28 GPa should be
expected by the requirement of the model.

Fracture mechanism

In the previous section, different deformation behaviour
was observed for the lower molecular weight cases
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Figure 6 Change in the average chain length observed in polar model
fibres with M, = 3.6 x 10° (A) and M, = 6.4 x 10* (®)
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Figure 7 Distribution of stress on bonds observed in nonpolar model
fibres with (a) M, = 3.6 x 10° and (b) M, = 6.2 x 10*. Numbers are
the strain at which the distribution was calculated

(elastic—plastic) and the higher molecular weight cases
(elastic—brittle). In the following session we discuss the
difference of the fracture mechanism as a function of
molecular weight.

First, we calculated the degree of bond-cleavage during
the simulations. We chose M, = 3.6 x 10° as the low
molecular weight case and M, = 6.4 x 10* as the high
molecular weight case of polar model, and the change in
the average chain length in both cases are shown in
Figure 6. Note that the interchain interaction per a
segment is different in each model, as mentioned in the
previous section (see Table I). In the low molecular
weight case, the average chain length did not change until
a strain of 11% and slightly drops at 12%. Since the
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critical point observed in Figure 4 was at a strain of about
9%, the transition of the deformation mode from elastic
to plastic is not due to the chain-scission. In the high
molecular weight case a remarkable drop in average
chain length was first observed at a strain of 18%, and
rapidly decreased for the higher strain. The maximum
stress was pronounced at 19.5% (Figure 4), where the
average chain length was less than half of the initial
value. This indicates that the fracture was the result of an
enormous number of bond-cleavages in the entire region
of the fibre. The same tendency was observed in the
simulations of the nonpolar model.

We then investigated the distribution of stress. Figure
7 shows the distribution on the bonds calculated for
the nonpolar models in the case of (a) M, = 3.6 x 10°, as
the low molecular weight, at strains of 5% and 10% and
(b) M, =62 x 10* as the high molecular weight, at
strains of 5%, 10%, 15%, and 17%. At a strain of 5%
the distribution in the low molecular weight case is
considerably wider than that of the high molecular
weight case. At a strain of 10% significant broadening
was observed, indicating the great extent of stress
concentration. Conversely, in the high molecular
weight case the distribution is quite narrow until 15%
and slightly broadened at the strain of 17% which is just
below the fibre-breakage. It can be said that the
deformation is highly homogeneous until very close to
the fracture in high molecular weight case, and it must
be the major reason for the very high tenacity. The
distribution of the stress in polar models were also
calculated and shown in Figure 8. The general trend is
same as in the nonpolar model, and the peak positions at
the same strain ratio are exactly the same. However,the
distribution observed in the polar model was narrower
than that in the nonpolar model. This must be the result
of enhancement of interchain interaction by polar
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Figure 8 Distribution of stress on bonds observed in polar model
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Figure 9 Calculated average volume of voids against the stram in
polar model fibres with M, = 3.6 x 10° (A) and M, = 6.4 x 10* (@)

interaction, and the stress on bonds or chains being more
effectively transferred to others in polar models.

Our model initially contains numbers of defects due
to chain-ends. The size of those can be thought as the
volume of a unit rectangular lattice, 4.8 x 4.0 x 8. 6A3.
As the strain increases, these defects are expanded, new
defects may be created by bond-cleavage, and/or they
may meet each other to form a larger region. These
regions cannot support stress. We call such a region a
void and define it as a continuous region where stress is
less than 10% of the stress on the fibre. We calculated the
average size of voids during the simulation, and plotted
these in Figure 9. In the low molecular weight case
average void-volume first increased with larger rate than
the overall elongation ratio, indicating the pores between
chain-ends were more selectively expanded than chains.
This means the stress on chains was not effectively
transferred to other chains, and this is the reason that the
slopes of the curves of lower molecular weight cases were
reduced. At the strain of 9% (close to the critical point)
average volume began to increase significantly. Con-
sidering that no bond-cleavage had occurred until this
strain ratio, this is the direct observation of chain-
slippage. Thus, the mechanism of the fracture for the low
molecular weight case can be attributed to the beginning
and the acceleration of chain-slippage caused by enhanced
stress. In the high molecular weight case average void-
volume increased with the same rate of elongation until
the strain of 17%, then it increased rapidly. As shown in
Figure 6, significant bond-cleavages began to occur at
strains between 17% and 18%. The mechanism of the
fracture in the high molecular weight case can be thought
as the catastrophic bond-cleavage and rapid propagation
of voids.

CONCLUSION

The model and method were developed to estimate the
tenacity of perfectly oriented fibres of polymers of finite
molecular weight. This model can also be applied to

various polymers by modifying bonding or nonbonding
interaction. The results were discussed in terms of the
effect of molecular weight and nature of intermolecular
interactions.

The tenacity of the mode! fibres was found to depend
strongly on average molecular weight, and different
fracture mechanisms were observed for lower and higher
molecular weight cases. In the lower molecular weight
cases, where interchain interaction is not strong, the
fracture was governed by chain-slippage and assumed
plastic behaviour. The tenacity is determined by the
stress which causes chain-slippage, and the value can be
thought to increase linearly with chain length. This
should be the origin of the molecular weight dependence
of the tenacity in this region. Therefore, the enhancement
of the tenacity by polar interaction is more significant in
the lower molecular weight cases. Conversely, in the
higher molecular weight cases, where the interchain
interaction is stronger than the bonds, the fracture was
caused by the catastrophic bond-cleavages in the entire
region of the fibre, and assumed brittle fracture. Here,
the amount of defective regions, i.e. chain-ends and very
short chains, must be important. The number of chain
ends is inversely proportional to the average chain
length. Therefore, the molecular weight dependence in
the higher molecular weight cases differs from that in the
lower molecular weight cases.

Our result for the nonpolar model is similar to that of
Termonia ez al.*, except the tenacity calculated with our
model is much larger. This is due to the different
treatment of the van der Waals interaction. Because
they treated the van der Waals interaction as a secondary
bond active within a small distance, the magnitude of the
interactions is smaller than ours. It is obvious that if one
uses smaller interchain interaction in our model, the
curves in Figure 5 shift downward. The absolute value of
the tenacity must be subject to the argument unless
precise estimation of interchain interaction is possible.
However, it is meaningful to discuss the general trend
of the dependence of the tenacity and the fracture
behaviour on the molecular weight and the nature of
interchain interaction.

Finally, the tenacity estimated in our simulation, even
for lower molecular weight, was higher than those
reported for expenmentally or commerc1ally obtained
high-strength fibres'>. However, it is useless to arrange
the parameters or potentlal functions in order to make
the tenacity of the simulation comparable with experi-
mental values because the structure and the mechanism
of the fracture are totally different. In our models the
structure of the fibres was mostly homogeneous except
for chain-ends due to finite molecular weight, and the
orientation of chains was perfect like a single extended
crystal. Thus, the mechanism of the fracture was
successfully described in terms of chain-slippage for the
case of weaker interchain interaction and bond-cleavage
for the case of stronger interchain interaction. In
contrast, many types of inhomogeneity in the structure
exist in real fibres such as extended crystals, lamellar
crystals, taut tie molecules relaxed molecules in amor-
phous phase etc.'*!® and the fracture must be the result
of the interrelated deformat1on of those elements. Even
in the ultra-high strength polyethylene fibres, the fracture
is determined by the defect region'®. Therefore, it is not
appropriate to compare our values dlrectly with those of
existing fibres. It should be emphasized that our methods
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provide the tenacity that we can theoretically reach with
polymers of finite molecular weight.
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